Random evolutions and the spectral radius of a non - negative matrix
نویسنده
چکیده
1. Introduction and summary. This paper offers yet another example of what probability theory can do for analysis. Using a Feynman-Kac formula derived in the theory of random evolutions (51, we find an expression (1) for the spectral radius r(A) of a finite square non-negative matrix A. This expression makes it very easy to study how r(A) behaves as a function of the diagonal elements of A. Kac (7) derived an expression of the same form as (1) for the principal eigenvalue of a second-order ordinary differential equation, using a Feynman-Kac formula for Brownian motion rather than for a finite-state Markov chain. His result has been extensively generalized (Donsker and Varadhan (3)). A direct derivation of (1) for non-negative matrices and the two main consequences of (1) derived in section 2 (inequalities (7) and (9)) may be new. Inequality (7) is a lower bound for r(A) when A is irreducible. Inequality (9) asserts that, whether A is irre-ducible or not, r(A) is a convex function of the main diagonal of A. Section 3 reviews alternative, partially successful approaches to the same results. This paper substantially generalizes the major results of (2) and provides much
منابع مشابه
On spectral radius of strongly connected digraphs
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملJoint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملCartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1978